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The dynamics of vortex structures and states of current in 
plasma-like fluids and the electrical explosion of conductors: 
11. Computer experiment 

N B Volkov and A M Iskoldsky 
Russian Academy of Science, Urd Division. Institute of Elecmphysics, 
34 Komsomolskaya St., Yekaterinburg 620219, Russia 

Received 4 September 1992, in final form 20 September 1993 

Abstract. In the present paper which is the second in a series, the dynamics of nonequilibrium 
phase uansitions and states of current in electrophysical systems providing an external circuit 
and a nonlinear element. the model of which has been developed in the fint paper of the 
Series (in the development of the model local kinetic hansport caefficients were assumed to 
be constant), has been analysed and simulaled. A nonequilibrium phase transition has been 
shown to be induced by la rge .de  hydmdynamic fluctuations (vortex suuctures). Critical 
exponents of the amplitude's singulx behaviour (the order pasameten) for lhree types of 
circuit have been determined. Nan-equilibrium phase !ramitions induced by extemal harmonic 
noise with a random or deterministic phase have been sfudied. The detuning between the 
external noise frequency and natural frequencies of a nonlinear element determined by large- 
scale hydrodynamic fluctuations have been shown to give rise to random oscillations, which 
are typical of a strange attractor. When the frequencies coincide, a limit cycle appears In the 
system, which is characterized by the fact ulat the phase mjectory does not fill the phase space 
completely. 

1. Introduction 

In the first paper of this series [l], a dynamic model of a non-equilibrium phase transition 
(NPT) has been offered and studied. This model, in our opinion, describes the initial stage 
of the turbulence nucleation in a conducting fluid (see our paper [Z] which indicates an 
analogy between~the initial stage of the electrical explosion of a conductor (EEC) and the 
turbulence nucleation in an incompressible liquid). It was also noted in [l] that'a further 
evolution of vortex structures, corresponding to a bansition to an isohopic spectrum. which 
is characteristic of a developed turbulence, would be a consequence of the splitting of the 
space scale. Assuming that the splitting is absent or hindered (as follows from [I], for the 
splitting to take place, the existence of a laminar flow of fluid is essential), then already 
in the framework of model [I], general problems of the dynamics of states of current in 
a conducting liquid can be studied, particularly, the dynamics of a transition to a steady 
state of the turbulence resistance. The model of [I] is a model of a nonlinear element (NE) 
inserted into the electric circuit that is a thermostat with respect to the NE. 

The purpose of the present computer experiment was to study proper motions that appear 
in the dynamic system, consisting of the NE model and the electric circuit, the dynamics of 
a spontaneous symmetry breaking in the initially laminar electron fluid, and also the NPT 
dynamics, induced by either a deterministic or a stochastic external noise. 
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Fwre 1. Elecnic circuits: (0) circuit SI. (b) S2 and (c)  S3. 
The following notation is used: Lo inductan% CO capacitance; 
RI ballast resistance; R2 he resistance of B nonlinear element; 
LM its extMlal inductance: R, load impedance. Circuit S1 can 
easily be lmnsformed io the DC current source if we formally let 
,Lo + m. S,imi@ly, circuits S2 and S3 can easily be h'ansformed 
to the DC voltage sources if we formally let CO -+ m. 

' CO 
Ra 

~. 
b 

2. Equations and procedure 

We discuss three types of extemal electric circuit S1 (figure l(a)), S2 (figure l(b)) and 
S3 (figure I(c)), where I , ,  I, and I,, are the currents in the corresponding branches of 
a network (see the figure caption for details of other notation). Circuit S1 can easily be 
isansformed to the DC current source if we formally let LO + 00. Similarly, circuits S2 
and S3 can easily be transformed to the DC voltage sources if we formally let CO + W. 

Equations describing transition processes in the circuits are: 

A. The model of a nonlinear element. 

x = s ( - x  + I*Y) 

2 = -(atXY + bZ) 

Y = alX(-Z +alrllz) - Y 

where the point symbol ' ' ' stands for the differentiation operator of a dimensionless time 
T = tto-', ro = (4g~*u&'bro2 is the basis time; 12 = izlo-' is the dimensionless currenc 
rl = RR,-' is the control parameter of the model; at = ngl-' = 0.819; g1 = 3.83171 
corresponds to the first zero of the Bessel function Ji (x ) ;  b = $; R and R, are, respectively, 
the magnetic Rayleigh number and its critical value. 

As was noted in [l], knowing X(T), Y(T) ,  Z(T), and Z(r) enables determination of 
the paths of particles transferring mass ('hydrodynamic particles') and current (conduction 
electrons), while solving the motion equations 
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where R,, Z, and RE. Z, are the coordinates of the paths for atoms and conduction electrons 
respectively; C, = 21/z~g1-2; C,  = glk-'C,; B = bcHo(16iren.vmglZ)-'; e and n, are 
the unit charge and the conduction electron density, respectively. Since (4x7) determine 
the particle paths corresponding to each moment of time 5 ,  then in their integration the 
X, Y ,  Z and I amplitudes should be regarded as constant, i.e; sets ( 4 x 5 )  and (6x7) are 
autonomous dynamic systems of~second order on the plane (r, 2). 

B. Circuit S I .  

i z = - [ n l r z + n z ( ~ z - a r l -  %I (8) 

1 where i l l  = R1c2roLo-'. i72 = Rpoc2toLo- and a = x-'Jo2(gl) .  

C .  Circuit S2. 

where n2 = Rp0RI-', r13' = R ~ R I - ' ,  r14 = to(RoCo)-', G I  =. 1 + ns-' and 
G* = 1 f G1rIz. 

D. Circuit S3. 

il = n5u - [rrlil + n6iz + URi 

u = - n  411 (13) 

iz = n6-L[n3(11 -I,) - U R ]  (14) 

(12) 

where U R  = ndIz - ar1-'Z). n~ .= R I C ~ ~ O L O - ' ,  i l 2  = Rpoczt~Lo-l, n3 = R&OLo-', 
n4 = Ioto(UoCo)-l, n, = ~ o c z t ~ ( ~ ~ L ~ ) - l ,  n6 = L , ~ L ~ - I  and u0, 10 are the basis 
voltage and the current. If we choose U0 and 10 so that U ,  = RIIO, then n~ = il, 
and n4 = to(R~Co)-' .  From (9x14)  one can see that the circuit with a DC voltage 
COrreSpOIIdS to n4 = 0. The initial condition for (8) is lz(0) = 1 and for (9) it 
is U ( 0 )  = 1. Correspondingly, for (12H14). the initial conditions are of the form 
I l (0)  = M O )  = 0, U ( 0 )  = 1. To diminish the arbitmriness in choosing initial conditions 
for (1H3), we take one of the values  on the surface of stable solutions of ( 1 x 3 )  at 
l z  = 1 =constant: X ( 0 )  = Y(0)  = -1.1419,2(0) = -0.40048. Incomputer experiments, 
we set s = u,u-' = 0.3779 x in practically all the cases (below, other values of X ( O ) ,  
Y(O),  Z(0) and s are marked clearly). 

It can be shown that (1H3) and (8). and also (1H3)~and (9Hl l ) ,  ( 1 x 3 )  and (12)- 
(141, without a load resistor, exhibit an asymptotic behaviour similar to that of equation (50) 
in 111. Actually, for circuit S1 and also for a one-loop circuit S3, we obtain (below, t, is 
the time corresponding to the singularity) 

X- - 1.8315(t, - ? ) - I  (15) 

Y - z -  - 0.9569i(r1(asn~)-')'~~(t, - t)-I (16) 

IZ- - 1.9139i(onz(r1s)-')~/~(t, - t)-'/'. (171 
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Similar asymptotes for a one-loop circuit have the following form 

X - -1.221(a~~G~G~-')~~~(t, -I)-' (18) 

(1% 

(20) 

(21) 

(22) 

where G3 = 1 + nz, G4 = G ~ ( Q ~ z ) - '  -al. The imaginary unit i in (15H22) points to 
a fluctuating character of transition processes in circuits S143.  It is worthwhile noticing 
that without NE in circuits SI and S2, a fluctuating process is impossible. 

We noted above that, knowing the X ,  Y ,  Z and I amplitudes, we can plot spatial field 
distributions of hydrodynamical ( U @ ,  2)) and current (UT(?. 2)) velocities at any point of 
time. Therefore it is necessary to solve (4x5) and (6x7). 

Equations (I)-(3), (4)-(S), ( 6 x 7 )  and (8H14) are dynamic systems which are in 
general non-autonomous. Therefore, to study them, a mathematical technique of the theory 
of dynamic systems [3-7] can by employed. In particular, one of the methods used below 
is that of Lyapunov's characteristic exponents [8,9]. Despite the fact that equations (1)- 
(14) describe physical processes in an open dissipative system, this, as will be shown 
below, refers to the class of mixing dynamic systems (K-systems [lo, Ill), determining 
relaxation to a thermodynamic equilibrium [ 111. If instant values of Lyapunov's exponents 
are regarded as time-averaged logarithms of Yakobian's eigenvalue modules of a linearized 
dynamic system, then these exponents can be used to analyse a transition chaos in the 
dynamic system and the time behaviour of the phase-space fractal dimensionality and also 
of the Kolmogorov-Sinai metrical entropy, related to the positive Lyapunov exponents [Ai+) 
by S = xi Ai+ [41. can be found. To calculate Lyapunov's exponents we use the algorithm 
proposed in [8,91 , a d  to calculate fractal dimensionality we use the Kaplan-Yorke formula 
t121 dr = j + AilAi+~l-', where j is evaluated from the conditions c!=l Ai t 0 and x:L; Ai .= 0. Below, parallel with the Kolmogorov-Sinai entropy S, we use the value 
F = xi hi. Computer experiments show that in our dynamic system the case of all the 
Lapunov exponents being positive is realized. Here, by comparing S and F, we can find a 
characteristic time when the behaviour of the process changes, i.e. the so-called explosive 
regime appears. 

A characteristic property of the dynamic systems described by (1x3) and (8)-(14) is 
the existence of a one-to-one phasespace mapping onto the plane U-I ,  which is sometimes 
called a UI-characteristic (VCC-it should be noted that, strictly speaking, the notion of 
VCC is applicable only for a stationary state of the dynamic system). With a uniform step 
of the amplitude mapping in time (At ) ,  vcc can be regarded as the Poincd  point mapping 
(accurate within the step At). There is a stationary state at a LIC voltage in the circuit S2; 
also an analytical expression for Vcc can be found for this circuit. Actually, the current in 
NE is determined by the following expression 

Iz = C1+ Czrl-IZ (23) 

Y - ~."~i(Gg(asnz)-')''~(t, - t)-' 

2 - 1.105iG3G4-112(t, - t)-' 
12 - 1.105ianzrt-'(s~4)-'/~(r, - t)-' 

U - l.105ian,n4rl-1(~G~)-1/2Ln(t* - t )  

(CI = UGz-', Cz = Glnza3Cz-'), therefore vcc takes the form 

UZ = nz(i - + n ~ a 3 c ~ c ~ - ~ .  (24) 



The dynamics of vortex structures and~states of curreni: II 6653 

where I, is determined by formula (23). It is seen from (27) that at negative root values a 
stationary solution is non-existent. Expressions (25) and (26) point to the existence of two 
stationary solutions in the circuit 52 which differ in X, and/or Y, signs. 

3. Computer experiment and discussion 

In our computer experiment we investigated the following problems: 

( I )  To find out how initial data influence the dynamics of processes in the dynamic systems 
under study and also the role they play in reaching and choosing a stationary state from a 
set of permissible stationary states. 
(2 )  To study the spectral dynamics of Lyapunov’s exponents and the Kolmogorov-Sinai 
entropy and also the role of transition chaos in ‘forgetting‘ the initial condition. 
(3) To investigate the dynamics of establishing a limiting cycle in circuit S3~under a Dc 
voltage and its connection with the initial data. 
(4) To find out the difference between physical processes occurring in the dynamic systems 
with a finite energy content (circuits S1 and S3) and those in circuits under a DC voltage 
(circuits S2 and 53). 
(5) To analyse the problem of transformation of the time in the model (1) and to study the 
chaos in a ‘transformed‘ dynamic system. 
(6) To determine and to classify the characteristic features of a spontaneous symmetry 
breaking and the transition to turbulent resistance in the initially laminar electron fluid. 
(7) To study the dynamics of NPT induced by an external noise (deterministic or chaotic) 
and also the influence of frequency detuning on the transition process in the circuit S3. 

Presented below are the principal results of our computer experiment and their brief 
discussion. 

The dynamics of transition processes has been found to be of a threshold character, 
a transition to a steady-state regime occurring through a sequence of bifurcations at a 
sufficient level of supercriticality. In this case, the transition process in circuits SI and ~2 
is an oscillating one and a section with a negative differential resistance appears on the VCC. 
Figure 2 displays vcc in the circuit S1. One can see that, for a critical regime, the system 
‘wishes’ to perform a phase transition, though due to the lack of supercriticality the initiated 
perturbations subside and the system comes back into the steady state, corresponding to zero 
current in circuit SI. 

In the circuit S2 under a DC voltage there is a stationary state determined by expressions 
(25H27). A transition to this state occurs through a sequence of bifurcations (curves 1 and 
2 in figure 3 show, respectively, the change~in the current and the voltage drop across NE). 
Let us note that without NE in the circuit SI the fluctuating process fails. The fluctuations 
appe,ar due to the fact that NE is actually a dissipative electrodynamic system where energy 
transfor& step-by-step from mechanical degrees of freedom to the electromagnetic field 
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Figure 2. Ul-characteristics of a nonlinear element in 
the circuit S1: curve I ,  subcritical conditions (n = 5): 
curve 2, critical conditions (q = 6.34); curve 3. SupXfit- 
icality (rl = 6.5). 

Figure 3. Characteristics of the transition process in 
the circuit S2 with a DC voltage source: curve 1, current 
in the nonlinear cell: curve 2. voltage in the nonlinear 
cell. In circuit S2, at a conslant R2. oscillations are 
impossible. The oscillations shown in the figure are 
the result of lheir own internal motion in the nonlinear 
element. in circuit S3. 

F m r e  4. Characteristics of the transitionprocess in the 
circuit S3 with a DC voltage source: curve 1. the total 
currenc curve 2. current in the nonlinear cell: curve 3, a 
load curreni Adding the Lo and LPo inductances to 
circuit S2 results in the destruction of the stationary 
state obtained in circuit S2. Instead, the limit cycle acts 

and vice versa (see [I]). The stationary state corresponds to a practically zero current in 
NE, the amplitude of which is sufficient to sustain this regime, the voltage dmp across the 
conductor being non-zero. The NE resistance in the stationary state surpasses considerably 
its initial value. Next we show that it is determined by the formation of vortex structures 
in the electron fluid (by a spontaneous symmetry breaking), which is why it can be referred 
to as a turbulent resistance. 

As follows from expressions (25H27), the vcc corresponds to two stationary states 
which differ in the X and (or) Y signs. The realization of one of the signs is determined 
by X ( 0 )  and (or) Y(0) .  Our simulation showed that the initial state of the system with the 
signature {- - -1 or {- + -1, {- - 0) or 1- f 0} leads to the choice of the stationary 
state with the signature (- - -}. The initial state with {+ + -) or [+ - -1, (+ + 01 or 
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{+ - 0) results in the choice of the stationary state, respectively, with {+ + -} (the symbol 
0 denotes that Z(0) = 0 and, hence, its sign is neutral). It has also been shown that the 
signature of the stationary state, when X ( 0 )  = Z(0) = 0, is determined by the sign of 
Y(0):  the signature (- - -) corresponds to the signature of the initial state {0 - O), and 
the signature [O + 0) corresponds to (+ + -}. 

-1.5 
18 20 22 24 28 

t 

Figure 5. Time variation of the Kolmogorov-Sinai 
entmpy S ( r )  and the current in the nonlinear cell for 
circuit S2 with a DC voltage source: (U)  S(r ) ;  (b) the 
startingsedon of the c w e  so); (c) the starting section 
of the cwent curve; the sign * marks characteristic 
points for which sections of $e conductor are drawn in 
the plane r-z (figure 9): the second point corresponds 
to the break of !he c m e  S(r) when all the Lyapunov 
expomts are nm-negative (12 = 0.9: the beginning 
of switching); and the fhird point to the inkction point 
S(t) (I? 2 0.1 - 0.15: the end of switching). The 
maximum S ( r )  corresponds to the maximum itansition 
chaos (to the minimum time for tripping the correlation 
5 7 S-' [131). 

A similar condition takes place in the circuit S3 under a DC voltage. The presence of 
reactance elements in the circuit, i.e. the inductance Lo and Lp0, brings ahout the distortion 
of the stationary state that existed in circuit S2. A limit cycle acts as a stationary state in 
circuit S3 (see figure 4). 

The stationary solution in circuit S2 and the limit cycle in circuit S3 at fixed circuit 
parameters 'forget' about the starting data due to bifurcations in the dynamic system (the 
starting data influence the time of transition to the stationary state rather than the stationary 
state itself). The character of forgetting the starting data is characterized by the time of 
uncoupling the correlations r,, which is connected with the KolmogorovSinai entropy by 
the relation r, - S-' [lo, 131; the entropy, in tum, is determined by the spectrum of 
the Lyapunov exponents. Figure 5 shows the entropy time alteration for circuit S2; the 
star symbol * marks characteristic moments of time corresponding to the cross sections 
of the conductor passed by the plane r-z in figure 9. The maximal entropy growth rate, 
and, hence, the maximal rate of the descent of rC, fall at the region of a transition chaos, 
which corresponds to the process when the system passes through successive bifurcations. 
Figure 5 shows the initial section S(t)  where, among the points marked by *, there are 
two characteristic points: the first one corresponds to the time when all the Lyapunov 
exponents become non-zero (positive) and the derivative S(t)  is discontinuous; the second 
one corresponds to the inflection point of the curve s(r). The breakpoint corresponds to 
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the current 0.9 and the inflection point to 0.1-0.15 (see figure 5(c) which shows the curve 
of current in NE). This allows us, as is shown in the third paper of the present series, 
to formalize the notion of the ‘start’ and the ‘end‘ of commutation, while processing the 
experimental findings. The maximum on the entropy curve (figure 5(a)) corresponds to 
a maximal chaos. On reaching this chaos the system ‘settles down’ and S ( t )  tends to a 
certain limit, which, generally speaking. depends on the point in phase space from which 
we start at the initial moment. Under fixed circuit parameters, as is shown by computer 
experiment, the stationary state corresponds to an infinite set of starting data (trajectories). 
This behaviour is characteristic of dynamic systems with mixing (K-systems) [4,10,1 I, 131. 

N B Volkov and A M Iskoldsky 

1 
.,5 .,o -5 0 5 10 15 a 

Fwre 6. Mapping of the phase trajectory of 
the amplitude X ( t )  and plane obfr;ined in 
circuit S2 with a DC voltage source and the 
nonlinear elemenl in the model in which the time 
sien is redaced bv the oowsite sian la nonlinear 3 - . .. _ .  

X element with backward running time). 

In the indicated set of trajectories, there is one (in the sense of an optimal control [14]) 
in the E vicinity, where the KolmogorovSinai entropy is minimal. Therefore it can be 
called geodesic. We found it by converting the time in the initial equations of the model 
(it should be noted that we were prompted to do so by the commentS in [I31 that the state 
with all Lyapunov exponents positive COHeSpOndS to a repelling centre-a repeller [4]; in 
this case the state at f = -CO corresponds to an attractor). We expected that, having passed 
through the region of transition chaos, the system returns to the state close to the initial 
one. However this assumption proved to be wrong. In the dynamic system obtained by 
converting the time, when it approaches the onset of the region of a transition chaos, chaos 
appears in the cross section of the phase transition in the X-Y plane (figure 6). Since NE 
are included in the circuit with a DC voltage source, the X, Y, 2 and I amplitudes tend to 
infinity during a finite time ‘covering up’ the whole region of the phase transition. Starting 
from any point on this trajectory we come back to the stationary state directly along this 
line (see figure 7, which shows the change in X (a), Y (c) at the backward running time, 
and X (b), Y ( d )  at the forward time). Starting from any other trajectory point except the 
geodesic one, we will also come to the stationary state, though along another trajectory, 
which eventually will tend to a geodesic one; in this sense a geodesic trajectory is an 
attractor (see figure 8). 

Polarity reversals of the current occuning in the dynamic system with constant local 
kinetic coefficients during successive bifurcations point to the fact that a spontaneous 
symmetry breaking takes place. Figure 9 shows cross sections of the conductor in the r-z 
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0.00 10.00 
t 

Figure 7. Time variation of the X and Y 
amplitudes in circuit S2 with a Dc voltage s o w  
at a backward d n g  and a forward running 
time: (0 )  X ( t )  in the circnit with the nonlinear 
element at the back running time; (6)  X ( r )  in 
the circuit with the nonlinear element at forward 
running time; (c) Y(1) in the circuh with the 
nonlinear element at backward running time; 
(d )  Y(r)  in the circuit with the nonlinear element -00 

t al forward running lime. 

plane-at characteristic times marked by * on the curve S( t )  (see figure S(a)). Figure 9(a) 
presents the initiation of a double stationary point of the dynamic system 'cenue-saddle' 
(3) (the moment of the first vortex set initiation) and figure 9(b) shows the second vortex 
set initiation. From the moment of the first voItex set initiation, a separatrix surface forms, 
which divides the region occupied by the current into two parts, with part of the total current 
being partly 'intercepted' by voitices. Sites marked by * in figure 9(a), correspond to the 
location of a Joule heating s o w e  due to the disturbance of the conductor uniformity. These 
sites correspond to the so-called 'hot points' revealed in electrically explosive conductors 
[ 151 (we will discuss them in detail in the third paper~of the present series). During a further 
evolution the region occupied by a laminar current is 're-squeezed' (figures 9(c) and ( d )  
show the field of the sepmtrix at the onset and at the end of the commutation, respectively). 

Thus, the increase in~the effective conductor resistance is a consequence of the change 
in the topology of the conductor region occupied by the current and not an increase in a 
.local specific resistance that is caused by small-scale kinetic fluctuations. 

Figure 9(e) corresponds to the first connection of current in reverse polarity. One 
can see that i t  is not the change of particle rotation in the vortex which the polarity 
reversal corresponds to, but a reconnection of trajectories belonging to the separatrix between 
neighbouring couples of singular points on the external surface of the conductor. Figure 9 ( f )  
shows the field of separatrices for the state of the dynamic system close to a stationary one. 
It can by seen that in the stationary state a low current, sufficient to sustain the steady state 
in an open dissipative system, is reached. An effective turbulent conductor resistance in the 
stationay state is greater by two orders of magnitude than the initial one. Figure 10 shows 
the field of conduction electron trajectories which correspond to the time close to that in 
figure 9 ( f ) .  

Figure 11 shows the field of hydrodynamic particle trajectories. It is easy to notice 
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a b C 

t d e f 

Figure 8. Time variation in the length of the radius 
vector of the ampliwdes W = (EYi)'l2, {Yil = 
{X, Y. Z, I ) :  cwve 1, the marked tqjeclory (see 
figure 7); curve 2, the trajectory from iU E vicinity. 

Figure 9. Cross section of the separaeix surface in 
the r--z plane, which separates finite !.Fjectori€s of 
mnduction elecfras fram infinite ones in the circuit 
SZ with a DC vollage source ar times marked by * on 
the c w e  S ( r )  (figure Xa)). Sites marked by * in (a) 
correspond to the locarion of a Joule heating source; 
m o w s  in (a)  direct the vector field velocity of plasma- 
like medium particles. The stale corresponding to (f) 
is similar to a stationary one. 

that the hot points are squeezed between hydrodynamic vortex loops, the particles of which 
move towards each other near the axis. It is known [16] that vortex loops can move along 
the loop axis, the direction of their motion coinciding with the direction of particles near 
the axis. Hence, vortex loops, the particles of which move towards each other near the axis, 
are attracted, forming pairs similar to Cooper pairs in superconductors [17], and loops, the 
particles of which move in opposite directions near the axis, are repelled. Due to this fact 
the conductor starts splitting into pieces which have (see [I]) kl = 0.5k0 and which are 
topologically equivalent to the sphere without an axis. This fact allows us to understand 
the similarity hypothesized in [I], that, in splitting, the following hierarchy takes place: 
k2 = 2!i~ + k3 = 2k2 + k4 = 2k3 etc, proceeding on the assumption that particles formed 
as a result of the conductor splitting 'contain' paired vortex loops. 

Transition processes in circuits with a finite energy store differ essentially from those 
in circuits under a Dc voltage, in particular, the steady state in the circuit S3 corresponds to 
the condition X, = Y, = 2, = 11, = Im = 0. Figure 12(a) shows vcc in the circuit 
S3, the parameters of which are chosen so that the transition process in a subcritical regime 
may be close to the aperiodic one: no = J& = 113 = 1, I72 = 0.1, i l 4  = 0.5, lis = 0.1; 
X(0) = -1.1419, Y(0)  = Z(0) = 0, TI = 750. The onset of a curved portion with a 
negative differential resistance of NE corresponds to a topological reconstruction of singular 
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Figure 10. Vector field of the current density 
in the nonlinear element corresponding to 
figure w): r = 26.59. r = -0.906 x 
X = -5.1398, Y = -2201.38, Z = -1197.53. 
The solid curve shows the c m s  section of the 
separatrix surface in the r-z plane. 

P i e  11. Vector held of the hydmdynamic 
0 velocity. 

points of the dynamic system determined by (1) (see figures 12(b), (c)),  in consequence of 
which a channel for a laminar Row along the conductor axis is formed. During the initial 
and decaying portions of vcc where the circuit current is low, closed toroidal structures 
may be formed which are ellipsoids or sphery 'dressed' on the axis which is a separatrix 
(figure 13). 
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b c 

Figure 12. Ulzharacteristics (a), and the cross senion 
of the sepmuix surface at the moment of the first vortex 
system initiation (b )  and at the beginning of the UI- 
characteristics with a negative differential resistance (c) 
by * in (U) in the circuit S3 with a limited energy 
content 

Figure 13. Vector field of the current density and the 
cross d o n  of the separatrix surface during the decay 
section of the Ul-characteristics in the circuit S3 with 
a limited energy content 

It should be noted that in circuits  with finite energy store sources, the dynamics of the 
states of current and NFT are determined not only by the control parameter rl but also by the 
initial amplitude of the field of hydrodynamic velocity X which depends on the prehistory 
of the process (in particular, on the process of storing mechanical defects during the stage 
of pre-melting and melting). Since we deal with an electrodynamic system, the NFT can be 
realized only due to X , i.e. due to energy stored in mechanical degrees of freedom in the 
previous stages of the process. This idea is supported by experiments where the conductor 
current was interrupted while the conductor was still melting. For example, in [181 the 
conductor was shown to break down after about 100 ps.  

For the dynamic system with backwards running time, separatrices split the current 
into three laminar currents; the boundaries between them are formed by separatrices with 
vortices, the area of which changes chaotically (in time). Figure 14(a) shows the time 
variation of the Kolmogorov-Sinai entropy; the point on the curve S(r) corresponds to the 
onset of chaos. Figure 14(b) shows separatrices of conduction electron bajectories at the 
same time. In this case, the current and voltage drop across the conductor increase and 
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b 
Figum 14. (a) Time variation of the Kolmogorovsinai entropy in the circuit S2 with a DC 

voltage source and the nonlinear element at the backward running time; and (b) the cmss section 
of tlie separatrix surface'in the r-z plane at the time marked by * on the curve S(1). 

the absolute impedance has a considerably smaller value than in the stationary state of the 
circuit %?1 

Included as a component of circuits S2 and S3, a source of external noise in the form 
E ( f )  = E cos(or + q) with'a deterministic or random phase (uniformly distributed in the 
space [0, 2nl) enabled investigation of NFT induced by external noise. In the circuit S2 under 
a DC voltage, time intervals between bifurcations were shown to increase under the action of 
deterministic noise. In addition, the transition process in the intervals is basically determined 

1.5 

1 .o 
0.5 

I 0.0 

-0.5 

-1.0 

-1.5 
0 20 40 60 80 100 120 140 160 180 200 0 

t 
1.5 

I I I ~ I  I I I I I I 
I I I , , , I , I I  

U 

-0.5 
0 20 40 ~ 60 80 100 120 140 160 180 200 350 t 400 

t 
Figure 15. (a), (b) Time variation in the current of the nonlinear element; and (c), ( d )  the 
voltsge amss  this element in circuit S2 with a DC voltage source and witli an additional source 
of external harmonic noise. 
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Figure 16. Time variation in the voltage m s s  the nonlinear element in the circuit S2 with a DC 
voltage source and with an external harmonic voltage source having a random phase distributed 
in the interval [O. 2x1 with the pmbability w = (2n)-': (a), (b), (c) and (d )  correspand to 
various time intervals. 

by an extemal harmonic EMF (see figure 15, exhibiting the change in current and voltage 
in NE). The harmonic perturbation can be seen to destroy the stationary state in circuit S2 
under a DC voltage by hindering a non-equilibrium phase transition (decreasing the degree 
of supercriticality) and by changing the form of the resulting current and voltage pulses. 
In the intervals between bifurcations the existence of topological structures characteristic of 
sources with a finite store of energy is possible and the effective resistance of NE is close 
to the initial one. 

Exposed to a harmonic EMF with a random phase, stochastic oscillations are brought 
about in circuit S2 and their behaviour is determined not only by a random phase transition 
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but also by bifurcations. In addition, in the intervals between the latter, the effective 
resistance of ME does not reach its initial value (figure 16). 

In circuit S3 under a DC voltage, the stationary state represents a limiting cycle with a 
known frequency (in OUT case CO = 0.4~). It is interesting to study the influence of EMF 
having the same frequency and the detunings of frequency on processes in the dynamic 
system. Figures 17-19 show point mappings of %e dynamic system in the 11-12 plane 
for different time intervals. It can be seen that when affected by an EMF with a resonant 
frequency, the transition chaos takes a finite time at the end of which the limiting cycle is 
formed, representing a finite digital set of points. Hence, the fractal dimension is smaller 
than the dimension of phase space. The detuning of the frequency results in the appearance 
of chaotic fluctuations which are qualitatively similar to those.appearing under the influence 
of a hannonic EMF with a random phase. 

-2 -1 2 
1, I> 1, 

Figure. 17. Point mapping of the phase mjectory in the plane Iz-11 in circuit S3 with a 
DC voltage source and an extemal hannonic noise volcige source with frequency o = 0.2~: 
(0) f E (0. SO]; (b) r E 150. 1001; (c) r E [IW, lso]: (d) r E ~lso,2OOl; (e) r E [ZOO, 2501; 
(f) I E [250.3001. 

4. Conclusion 

The principal result of the present paper is a demonstration that large-scale vortex 
perturbations determine the dynamics of states of current in plasma-like media It is 
important lhat the conductor material is~supposed to be incompressible and local kinetic 
coefficients are constant. Hence, we have a sufficiently simple analogy with equilibrium 
phase transitions, where a local potential of interaction between particles does not influence 
pmtically the dynamics of the phase transition [19]. The results obtained and discussed 
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the plane lz-ll in circuit S3 with a DC voltage source 
and an external harmonic noise voltage sou~ce with 
frequency equal to the natural frequency (w = 0.4~): 
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Figure 19. Point mapping of the phase trajectory in the plane Iz-11 in circuit S3 with a 
DC volrage source and an external harmonic noise voltage source with frequenq' id = 0.6~: 
( U )  I E [0.501: (b) r E [50.1001: (4 r E [loo. 1501; ( d )  f E [I50.;?OOl: (e) r E [200.2501; 
(f) r E [ZsO, 3001. 
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above are mostly of a qualitative character, as they are not applicable from the beginning 
of the space scale splitting. Nevertheless, they can be applied in a qualitative analysis of 
experiments on the electrical explosion of conductors discussed in the third paper of our 
series. . 
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